Skkn tiểu luận môn đổi mới phương pháp dạy học toán

  • 42 trang
  • file .doc
Tiểu luận môn đổi mới phương pháp dạy học toán
ĐỔI MỚI PHƯƠNG PHÁP DẠY HỌC TOÁN
I./ LỜI MỞ ĐẦU
Trong phương pháp dạy học cổ truyền, vấn đề học tập chỉ là việc truyền lại
những kinh nghiệm và hiểu biết của lớp người đi trước cho thế hệ sau. Hình thức
học này, người dạy đóng vai trò chính trong quá trình truyền đạt kiến thức, còn
người học chỉ giữa vai trò là người lĩnh hội kiến thức.
Một thời gian dài, vấn đề sáng tạo đã bị lãng quên. Mãi đến giữa những năm
50 của thế kỉ XX mới có bước ngoặc rõ rệt trong thái độ của các nhà khoa học nói
chung và của các nhà tâm lí nói riêng với vấn đề sáng tạo. Guilford ( 1967 ) đã
nhận xét rằng: “ Không có một hiện tượng tâm lí nào đã bị coi thường trong suốt
một thời gian dài và đồng thời được quan tâm trở lại một cách bất ngờ và đặc biệt
là hiện tượng sáng tạo ”. Cùng với phát triển một cách mạnh mẽ xã hội và nền
Khoa học đã đạt đến đỉnh cao thì việc học tập không chỉ là việc tiếp thu kiến thức
một cách thuần túy như trước nữa, người học cần phải tìm tòi và kết hợp với sự
hướng dẫn của người dạy để tự mình lĩnh hội tri thức. chính vì thế, việc đổi mới
phương pháp học tập là một vấn đề hết sức cần thiết và cấp bách.
Chính tầm quan trọng đó mà trong luật giáo dục ( 1994 ) điều 24 có quy
định “ Phương pháp giáo dục phổ thông phải phát huy tính tích cực, tự giác, chủ
động sáng tạo cho học sinh ”. Đồng thời tại Đại hội đại biểu toàn quốc lần thức IX
của Đảng Cộng sản Việt Nam đã đề ra cho ngành Giáo dục nhiệm vụ: “ Đổi mới
phương pháp dạy và học, phát huy tư duy sáng tạo và năng lực tự đào tạo của
người học ”.
“ Đổi mới phương pháp dạy học ở trường trung học cơ sở nhằm hình thành
và phát triển năng lực sáng tạo cho học sinh ”. Cho nên người dạy cần phải biết
vận dụng các biệt pháp sư phạm nhằm phát triển tư duy và tư duy sáng tạo cho học
-Trang1 -
Tiểu luận môn đổi mới phương pháp dạy học toán
sinh. Ngoài việc nắm được các phương pháp giáo viên phải thể hiện một cách sáng
tạo các biện pháp trên giáo án. Để đánh giá được kết quả của quá trình giáo dục thì
giáo viên phải biết kiểm tra đánh giá một cách khách quan để cho chính bản thân
người học thể hiện đúng thực lực và vốn kiến thức đã được linh hội thì cần phải có
hệ thống câu hỏi cho bộ đề thi trắc nghiệm là một việc làm cần thiết. không những
đã biết được kết quả của quá trình học sinh thế là đủ mà giáo viên cần phải tìm các
vấn đề sai lầm của học sinh để giúp đỡ các em tránh những sai làm không nên gặp.
Việc làm ấy thể hiện lương tâm và trách nhiệm của nhà giáo đồng thời cũng là tâm
gương cho các em học theo bởi vì mục tiêu giáo dục hiện nay là đạo tạo con người
mới có đủ đức, đủ tài, có phẩm chất tốt để phục vụ cho công cuộc xây dựng đất
nước, thực hiện công cuộc hiện đại hóa đất nước đưa đất nước đi lên Chủ Nghĩa
Xã Hội mà Đảng và Bác Hồ đã chọn.
II./ NỘI DUNG:
PHẦN I: CÁC BIỆN PHƯƠNG PHÁP SƯ PHẠM
NHẰM PHÁT TRIỂN TƯ DUY VÀ SÁNG TẠO CHO HỌC SINH.
Dạy học sáng tạo là cái đích phải đạt được của nền giáo dục thế kỉ thức XXI.
Từ đó, nhận thức được tầm quan trọng của việc rèn luyện năng lực sáng tạo cho
học sinh. Hoạt động sáng tạo được xem là tiền đề của sức khỏe trí tuệ, phát huy tư
duy sáng tạo của học sinh là lĩnh vực vừa rộng, vừa khó khăn. Hiện nay đổi mới
phương pháp dạy học ở trường phổ thông mới ở gia đoạn đầu, giai đoạn tích cực
hóa hoạt động học tập của học sinh. Dạy học sáng tạo còn là vấn đề mở, quá trình
tích lũy lí thuyết và kinh nghiệm cần tiến hành thường xuyên và lâu dài.Mặc dầu
cho đến nay các nhà khoa học chưa có cách hiểu thống nhất về sáng tạo nhưng đều
cho rằng “ Mọi người đều có tiềm năng sáng tạo nhưng mức độ sáng tạo rất khác
-Trang2 -
Tiểu luận môn đổi mới phương pháp dạy học toán
nhau và có thể bồi dưỡng trí sáng tạo được; giáo dục là khơi dậy tiềm năng sáng
tạo ”.
Để thực hiện được đổi mới phương pháp giáo dục, nhà giáo cần nắm được
phương pháp sư phạm nhằm phát triển tư duy và tư duy sáng tao cho học sinh. Là
giáo viên phải biết và trả được hệ thống câu hỏi: Thế nào là tư duy? Quát trình tư
duy diễn ra như thế? Sáng tạo là gì? Quát trình của sáng tạo? khái niệm của tư duy
sáng tạo ra sao? Nguyên tắc xây dựng và các biện pháp của tư duy sáng tạo? Thật
vậy:
A./ TƯ DUY:
Tư duy nói chung là quá trình nhận thức, phản ánh những thuộc tính bản
chất, những mối quan hệ có tính quy luật của sự vật và hiện tượng.
Theo từ điển tiếng việt ( 1998 ). Tư duy là “ Giai đoạn cao nhất của quá trình
nhận thức, đi sâu vào bản chất và phát hiện ra tính quy luật của sự vật bằng những
hình thức như biểu tượng, phán đoán và suy lí”.
Ở mức độ nhận thức cảm tính, con người chỉ phản ánh những thuộc tính trực
quan, cụ thể, bề ngoài, các mối quan hệ về mặt không gian, thời gian và trạng thái
vận động của sự vật, hiện tượng, phản ánh trực tiếp bằng giác quan những cái đạng
tác động. Nảy sinh trên cơ sở cảm tính và vượt qua giới hạn nhận thức cảm tính, tư
duy phản ánh những thuộc tính bên trong, những mối quan hệ có tính quy luật của
hàng loạt sự vật, hiện tượng, mhững điều mà con người chưa biết, cần tìm tòi và
giải quyết.
Con người chủ yếu dùng ngôn ngữ để nhận thức vấn đề, để tiến hành các
thao tác trí tuệ và biểu đạt kết quả của tư duy. Chính vì thế, tư duy mang các tính
chất: Tính khái quát, Tính gián tiếp, Tính trừu tượng. sản phẩm của tư duy là
những khái niệm, phám đoán, suy luân để diển đạt bằng những từ, ngữ, câu, …, kí
hiệu và công thức.
-Trang3 -
Tiểu luận môn đổi mới phương pháp dạy học toán
Tư duy là một hoạt động trí tuệ với quá trình gồm 4 bước cơ bản:
Bước 1: Xác định được vấn đề, biểu đật nó thành nhiệm vụ tư duy. Nói cách
khác là tìm được câu hỏi cần giải đáp.
Bước 2: Huy động trí tuệ, vốn kinh nghiệm, liên tưởng, hình thành giả
thuyết và cách giải quyết vần đề, cách trả lời câu hỏi.
Bước 3: Xác minh giả thuyết trong thực tiển. Nếu giả thuyết đúng thì qua
các bước sau, nếu giả thuyết không phù hợp thì phủ định nó và hình thành giả
thuyết mới.
Bước 4: Quyết định, đánh giá kết quả, đưa vào sử dụng.
Theo K.K.Platônôp thì sơ đồ của quá trình tư duy như sau:
Nhận thức vấn đề
Câu hỏi
Xuất hiện các liên tưởng
Sàng lộc liên tưởng và hình thành giả thuyết Giả thuyết
Kiểm tra giả thuyết
Xác minh
Khẳng định Phủ định
Chính xác hóa Tìm giả thuyết mới Quyết định
-Trang4 -
Tiểu luận môn đổi mới phương pháp dạy học toán
Hành động tư duy
Giải quyết vấn đề
mới
Quá trình tư duy được diễn ra bằng cách chủ thể tiến hành các thao tác trí tuệ. Các
thao tác trí tuệ cơ bản là:
Phân tích, tổng hợp So sánh Trừu tượng hóa và khái quá hóa Cụ thể
hóa, đặc biệt hóa Tưởng tượng Suy luận Chứng minh
B./ SÁNG TẠO:
Theo bách khoa toàn thư: “ Sáng tạo là hoạt động của con người trên cơ sở
các quy luật khác quan của thực tiển, nhằm biến đổi thế giới tự nhiên, xã hội phù
hợp với mục đích và nhu cầu của của con người. sáng tạo là hoạt động có tinh đặc
trưng không lập lại, tính độc đáo và duy nhất ”
Theo R.L.Solsor: “ Sự sáng tạo là mội hoạt động nhận thức đem lại một cách
nhìn nhận hay giải quyết mới mẻ đối với một vấn đề hay một tình huống ”.
Theo Henry – Glitman: “ Sáng tạo là năng lực tạo ra những giải pháp mới
hoặc duy nhất cho một vấn đề thực tiển và hữu ích.”
Theo Nguyễn Cảnh Toàn: “ Người có óc sáng tạo là người có kinh nghiệm
về phát hiện và giải quyết vấn đề đặc ra.”
Theo từ điển tiếng việt: “ Sáng tạo là tạo ra những giá trị mới về vật chất
hoặc tinh thần. Hay Sáng tạo là tìm ra cái mới, cách giải quyết mới, không bị gò bó
phụ thuộc vào cái đã có.”
Qua các khái niệm về sáng tạo ta có thể nói gọn : “ Sáng tạo là tìm ra cái
mới, có ích, độc đáo.”
Quá trình sáng tạo trải qua 4 giai đoạn:
-Trang5 -
Tiểu luận môn đổi mới phương pháp dạy học toán
Giai đoạn 1: Giai đoạn chuẩn bị cho công việc ý thức: Là hình thành vấn
đề đang giải quyết và giải quyết bằng các cách khác nhau. Ở giai đoạn này có vai
trò là huy động các thông tinh hữu ít còn tìm ẩn để có thể cho lời giải cần tìm.
Cùng với các yếu tố suy luận và trực giác tồn tại và bổ xung cho nhau.
Giai đoạn 2: Giai đoạn ấp ủ: Được bất đầu kho công việc có ý thức bất đầu
ngừng lại. công việc tiếp diễn là các hoạt động của tiềm thức.
Giai đoạn 3: Giai đoạn bừng sáng: Giai đoạn 2 kéo dài đến giai đoạn bừng
sáng trực giác là một bước nhảy vọt về chất trong tiến trình nhận thức. đây là giai
đoạn quyết định cho quá trình tìm kiếm lời giải. Sự bừng sáng trực giác này thường
xuất hiện đột nhiên không biết trước được và có khi nó xuất hiện sau khi đã có sự
dự cảm sẻ biết được kết quả.
Giai đoạn 4: Giai đoạn kiểm chứng: Giai đoạn này cần phải triển khai lập
luận chứng minh lôgíc và kiểm tra lời giải nhận được từ trực giác. Giai đoạn này là
cần thiết vì tri thức nhận được bằng trực giác chưa chắc chắn vì nó có thể đánh lừa
việc tìm kết quả.
Sáng tạo là hoạt động đa dạng và phong phú của con người cho nên ta có thể
phân sáng tạo ra thành 2 cấp độ :
+ Cấp độ một: Là hoạt động cải tạo, cải tiến, đổi mới, năng cao những cái đã
có lên một trình độ cao hơn.
+ Cấp độ hai: Là hoạt động tạp ra cái mới về chất.
C./ TƯ DUY SÁNG TẠO:
1./ Các quan điểm về tư duy sáng tạo:
Theo G.Mehlhorn cho rằng: “Tư duy sáng tạo là hạt nhân của sự sáng tạo cá
nhân đồng thời là mục tiêu cơ bản của giáo dục ”.
-Trang6 -
Tiểu luận môn đổi mới phương pháp dạy học toán
Theo J.Danton: “ Tư duy sáng tạo là năng lực tìm thấy những ý nghĩa mới,
những mối quan hệ mới, là năng lực chứa đựng sự khái quát, sự phát minh, sự đổi
mới, trí tưởng tượng …”.
Theo George Polya : “ Có thể gọi là tư duy có hiệu quả nếu dẫn đến lời giải
bài tập cụ thể nào đó. Có thể coi là sáng tạo nếu tư duy đó tạo ra những tư liệu,
phương tiện để giải bài tập ”.
Tư các khái niệm về tư duy sáng tạo ta có thể hiểu đó là sự kết hợp ở đỉnh
cao, hoàn thiện nhất của tư duy tích cực và tư duy độc lập, tạo ra cái mới có tính
giải quyết vấn đề một cách hiệu quả và chất lượng.
Tư duy sáng tạo được thể hiện qua 5 tính chất cơ bản:
+ Tính mềm dẻo.
+ Tính nhuần nhuyễn.
+ Tính độc đáo.
+ Tính hoàn thiện.
+ Tính nhạy cảm vấn đề.
Những biểu hiện đặc trưng của tư duy sáng tạo.
Đặc trưng 1: Thực hiện độc đáo việc di chuyển các tri thức kĩ năng, kĩ xảo
sang tình huống mới hoặc gần hoặc xa, bên trong hây bên ngoài hay giữa các hệ
thống kiến thức.
Đặc trưng 2: Nhìn thấy những nội dung mới trong tình huống bình thường.
Đặc trưng 3: Nhìn thấy chức năng mới của đối tượng quen biết.
Đặc trưng 4: Độc lập kết hợp các phương thức hoạt động đã biết tạo thành
cái mới.
Đặc trưng 5: Nhìn thấy cấu trúc của đối tượng đang nghiên cứu.
-Trang7 -
Tiểu luận môn đổi mới phương pháp dạy học toán
Đặc trưng 6: Nhìn thấy mọi cách giải quyết có thể có, tiến trình giải theo
từng cách và lựa chọn cách giải quyết tốt ưu.
Đặc trưng 7: Xây dựng phương pháp mới về nguyên tắc, khác với các
nguyên tắc quen thuộc đã biết.
Vai trò của tư duy biện chứng trong tư duy sáng tạo: trong việc phát hiện
định hướng cho việc giải quyết vấn đề thì tư duy biện chứng đóng vai trò sáng tạo
nhưng khi đã có phương án giải quyết thì tư duy lôgic đóng vai trò chính. Do vậy
tư duy biện chứng đóng vai trò quyết định trong sáng tạo ra vấn đề mới.
2./ Các biện pháp của tư duy sáng tạo:
Muốn dạy học sáng tạo môn toán ở THCS giáo viên cần phải nắm được các
biện pháp thường xuyên thực hiện và rút kinh nghiệm, bổ sung, chi tiết hóa biện
pháp thích ứng với từng loại đối tượng học sinh.
2.1./ Cơ sở khoa học của các biện pháp sư phạm:
2.1.1./ Cơ sở triết học:
Toán học có nguồn góc từ tập thể.
Bảo đảm tính thống nhất giữa cụ thể và trừu tượng: “ Từ trực quan sinh động
đến tư duy trừu tượng và từ tư duy trừu tượng đến thực tiển là con đường biện
chứng của nhận thức chân lí, của nhận thức thực tại khách quan ”.( Trích bút kí
triết học của V.I.Lênin)
2.1.2./ Cơ sở tâm lí học:
Học sinh THCS thuộc lứa tuổi từ 11 đến 15, là giao đoạn chuyển tiếp từ thơ
ấu lên trưởng thành, mang tính trẻ con, nhưng muốn làm người lớn.
Việc đổi mới phương pháp dạy học theo hướng phát huy tính tích cực, chủ
động, độc lập, sáng tạo của học sinh theo các đặc điểm của lứa tuổi.
-Trang8 -
Tiểu luận môn đổi mới phương pháp dạy học toán
 Về động cơ học tập: Hoạt động học tập được xem như là để thỏa mãn nhu
cầu nhận thức.
 Về khả năng chú ý: Tổ chức các hoạt động hợp lí, không có thời gian
nhàn rỗi để chú ý bị phân tán, mà chính những giờ học có nội dung đòi hỏi phải
hoạt động nhận thức tích cực có những hoạt động học tập thôi thúc đòi hỏi hào
hứng mới thu hút được sự chú ý.
 Về khả năng ghi nhớ: Dự trên sự so sánh, phân loại, hệ thống hóa, tốc độ
tốc độ và khối lượng kiến thức ghi nhớ tăng lên, có huynh hướng diễn đạt kiến
thức theo sự hiểu biết của mình.
 Về tư duy: Tư duy trừu tượng khái quát ngày càng phát triển, tuy rằng tư
duy hình tượng – cụ thể vẫn giữ vai trò quan trọng.
 Về quan hệ giao tiếp: Ở lứa tuổi này học sinh nẩy sinh cảm giác về sự
trưởng thành và nhu cầu được thừa nhận là người lớn.
Tóm lại: Đặc điểm sinh lí của học sinh THCS có những yếu tố thuận lợi cho
các phương pháp dạy học phát huy tính tích cực, chủ động, độc lập sáng tạo của
học sinh mà giáo viên cần phải khai thác. Nhưng cúng có những yếu tố bất lợi mà
giáo viên cần phải nắm vững và chủ động phòng tránh.
2.2./ Nguyên tắc xây dựng biện pháp sư phạm:
Nguyên tắc 1: Phải xuất phát từ cơ sở khoa học về việc hình thành và rèn
luyện tư duy sáng tạo. tương thích với nội dung chương trình và SGK toán THCS.
Nguyên tắc 2: Phải đảm bảo phù hợp với cấu trúc lôgic của nội dung,
phương pháp, kết hợp các lí thuyết dạy học truyền thống và hiện đại để rèn luyện
tư duy sáng tạo cho học sinh.
Nguyên tắc 3: Đảm bảo sự thống nhất giữa vai trò chủ đạo của thầy và vai
trò chủ động của trò.
-Trang9 -
Tiểu luận môn đổi mới phương pháp dạy học toán
2.3./ Biện pháp sư phạm:
 Biện pháp 1: Tập cho học sinh thói quen dự đoán, mò mẫm, phân tích,
tổng hợp.
a./ Cơ sở của biện pháp: Thể hiện rõ nét con đường biện chứng của sự nhận
thức chân lí vận dụng trong môn toán. Theo Lênin: “ Thực tiển cao hơn nhận thức,
bởi vì nó không những có ưu điểm là tính phổ biến mà còn có ưu điểm là tính thực
hiện trực tiếp ”. Như Nguyễn Cảnh Toàn đã viết: “ Đừng nghĩ rằng “mò mẫm” thì
có gì là “sáng tạo”, nhiều nhà khoa học lớn phải dùng đến nó. Không dạy “mò
mẫm” thì người thông minh nhiều khi phải bó tay chỉ vì không nghĩ đến hoặc
không biết “mò mẫm””
b./ Nội dung biện pháp: Từ trực quan, hình tượng cụ thể mò mẫm nêu dự
đoán rồi dùng các phương pháp tương thích phân tích, tổng hợp để kiểm tra lại tính
đúng đắn của dự đoán đó.
c./ Yêu cầu khi vận dụng biện pháp: Học sinh phải nắm vững kiến thức cơ
bản ( khái niệm, định nghĩa, định lí, công thức, suy luận lôgíc )
 Biện pháp 2: Tập cho học sinh biết nhìn tình huống đặt ra dưới nhiều
góc độ khác nhau.
a./ Cơ sở của biện pháp: Thể hiện mối quan hệ biện chứng của cập phạm trù
nội dung và hình thức. Cùng một nội dung có thể diễn tả dưới nhiều hình thức khác
nhau, chuyển từ hoạt động tư duy này sang hoạt động tư duy khác; nhìn một đối
tượng, mỗi vấn đề dưới nhiều góc độ khác nhau, nhìn trong mối tương quan với
các hiện tượng khác. Từ đó có cách giải quyết sáng tạo.
b./ Nội dung biện pháp: Nhìn vấn đề dưới nhiều góc độ khác nhau, giải
quyết vấn đề dưới nhiều khía cạnh, biện luận các khả năng xảy ra.
-Trang10 -
Tiểu luận môn đổi mới phương pháp dạy học toán
c./ Yêu cầu khi vận dụng biện pháp: Qua phân tích vấn đề, xuất hiện các
trường hợp cần giải quyết.
 Biện pháp 3: Tập cho học sinh biết giải quyết vấn đề bằng nhiều
phương pháp khác nhau và lựa chọn cách giải quyết tối ưu.
a./ Cơ sở của biện pháp: Thể hiện mối quan hệ biện chứng của cập phạm trù
vận động và đứng yên. Vận động chỉ mọi phép biến đổi, mọi cách giải. Đứng yên (
bất biến) chỉ trạng thái không đổi. lấy cái bất biến để ứng cái vạn biến. Do đó “ Khi
một cách giải dài và phức tạp, thì ta có thể suy ngay rằng có một cách giải khác,
sáng sủa hơn và đạt kết quả nhanh chóng hơn ”.
b./ Nội dung biện pháp: học sinh không chấp nhận một cách giải quen thuộc
hoặc duy nhất, luôn timg tòi và đề xuất được nhiều cách giải khác nhau cho một
bài toán. Giáo viên có nhiệm vụ định hướng cho các em, đặc biệt là chỉ ra được lời
giải tối ưu.
c./ Yêu cầu khi vận dụng biện pháp: Giúp học sinh biết hệ thống hóa và sử
dụng các kiến thức, các kĩ năng, thủ thuật một cách chắc chắn, mềm dẻo, linh hoạt.
Biết tập hợp nhiều cách giải và tìm được cách giải tối ưu. Từ đó phát hiện vấn đề
mới. Đồng thời, rèn luyện tính nhuần nhuyễn của tư duy sáng tạo.
 Biện pháp 4: Tập cho học sinh biết vận dụng các tao tác: khái quát hóa
( KQH ), đặc biệt hóa ( ĐBH ), tương tự ( TT ).
a./ Cơ sở của biện pháp: polya đã viết: “ Bản thân sự kiện khái quát hóa, đặc
biệt hóa, tương tự là những nguồn gốc vĩ đại của sự phát minh ”. KQH, ĐBH, TT
trở thành công cụ rất đắc lực để giải quyết vấn đề một cách sáng tạo. Biện pháp
này thể hiện mối quan hệ biện chứng của cặp phạm trù cái chung và cái riêng, cụ
thể là KQH, ĐBH, TT có mối quan hệ hữu cơ thống nhất với nhau theo một cơ
chế chung của tư duy và được phân phối với nhau trong việc giải quyết những vấn
đề sáng tạo trong toán học. Một cái riêng có thể là trường hợp đặc biệt của nhiều
-Trang11 -
Tiểu luận môn đổi mới phương pháp dạy học toán
cái chung khác nhau. Từ một cái chung nếu đặc biệt hóa từng bộ phận khác nhau,
bằng những cách khác nhau sẽ có nhiều cái riêng khác nhau.
b./ Nội dung biện pháp: Sáng tạo trong toán học là một loại suy diễn và quy
nạp kế tiếp nhau. Từ những sự kiện cụ thể riêng biệt ta so sánh đối chiếu các sự
kiện với nhau để phát hiện các sự kiện chung, rồi khái quát hóa thành kết luận tổng
quát. Suy diễn tiếp theo lại giúp phát hiện ra vấn đề mới, sự kiện mới, đa dạng
phong phú. Khái quát hóa, đặc biệt hóa là hai quá trình đối lập nhau nhưng thống
nhất với nhau. Trong nhiều trường hợp ta coi phép tương tự như là tiền thân của
khái quát hóa.
c./ Yêu cầu khi vận dụng biện pháp: Trên cơ sở phân tích và tổng hợp, vận
dụng các hoạt động trí tuệ KQH, ĐBH, TT, để rèn luyện tư duy sáng tạo cho học
sinh cần phân tích vấn đề một cách toàn diện ở những khía cạnh khác nhau. Phân
tích nội dung và kết quả của các vấn đề, khai thác các lời giải để định hướng giải
quyết các vấn đề đặc biệt, tương tự, các vấn đề tổng quát. Khi giải quyết xong vấn
đề cần phải rút kinh nghiệm để đề xuất vấn đề mới, thao tác tương tự giúp học sinh
giải quyết vấn đề theo các tiền lệ, thao tác đặc biệt hóa giúp học sinh mò mẫm đi
đúng hướng.
 Biện pháp 5: Tập cho học sinh biết hệ thống hóa kiến thức và phương
pháp.
a./ Cơ sở của biện pháp: Xem xét sự vật trong mối liên hệ rạng buộc lẫn
nhau và trong trạng thái vận động biến đổi không ngừng với một tư duy mềm dẻo
linh động. Hệ thống quá kiến thức một chương là dạy cho các em học tập một cách
sáng tạo, nhìn toàn cục chương có bao nhiêu khái niệm, định lí công thức, cách vận
dụng các kiến thức vào bài tập, nhìn thấy vị trí các chương trong học phần đã học.
Tầm quan trọng của ôn tập, tổng kết, hệ thống quá kiến thức đã học. Mỗi dạng bài
tập có cách giải riêng, cũng có khi một bài có nhiều cách giải. Giáo viên phải hệ
-Trang12 -
Tiểu luận môn đổi mới phương pháp dạy học toán
thống và chỉ ra cách giải phương án tối ưu. Đây là cách dạy cho học sinh tự học, tự
phát hiện và giải quyết vấn đề, bước đầu rèn luyện tư duy sáng tạo.
Theo quan điểm triết học: “ Sự mở rộng bài táon ban đầu là biểu hiện của
mối quan hệ các cặp phạm trù “ Nội dung và hình thức ”, “ Vận động và đứng yên
”, lấy “ Cái bất biến ứng cái vạn biến ” đó chính là tư duy sáng tạo ”. Giải bài tập
cho cùng là lấy bất biến ứng vạn biến ( bất biến ở đây là định lí, công thức, định
nghĩa; vạn biến là các dạng bài tập). Vấn đề khó là làm sao đươc các dạng bài tập
về dạng có thể sử dụng được định lí, công thức hay khái niệm đã có. Do vậy việc
sử dụng các bài tập tương tự các bài tập gần là rất cần thiết.
b./ Nội dung biện pháp: Học sinh có cái nhìn tổng thể các kiến thức trong
chương trình, các dạng bài toén thường gặp trong giải toán THCS. Ở mỗi dạng bì
tập các em biết cách hình thành và hệ thống phương pháp giải, đồng thời qua các
bài tập này các em mở rộng ra các bài tập mới, góp phần rèn luyện tư duy sáng tạo,
hình thành phong cách học tập.
c./ Yêu cầu khi vận dụng biện pháp: Giúp học sinh ôn tập, tổng kết, hệ thống
hóa, khái quát hóa sau khi học một chương, một phần hay toàn bộ chương trình.
Thấy được mối quan hệ giữa các phần đã học với nhau góp phần rèn luyện tư duy
biện chứng, tư duy sáng tạo.
 Biện pháp 6: Tập cho học sinh biết vận dụng kiến thức vào trong thực
tiển.
a./ Cơ sở của biện pháp: Toán học với vai trò là dụng cụ nhận thức, ngày
càng thâm nhập vào thực tiển. Thực tiển là chân lí của toán học và các khoa học
khác. Mối liên hệ giữa toán học và thực tiển có tính phổ dụng, toàn bộ và nhiều
tầng. Một trong các biện pháp chính để thực hiện tốt nguyên lí giáo dục là: tăng
cường việc giải quyết những bài toán có nội dung thực tiển. Đây cũng là xu hướng
hiện đại hóa nội dung chương trình, SGK và yêu cầu đổi mới phương pháp dạy học
-Trang13 -
Tiểu luận môn đổi mới phương pháp dạy học toán
ở trường phổ thông hiện nay. Thực tiển đóng vai trò quyết định của quá trình nhận
thức, là cơ sở, động lực và tiêu chuẩn của nhận thức. Trong quá trình dạy học, thực
tiển là điều kiện tất yếu để hình thành cho học sinh kĩ năng, kĩ xảo và nắm vững
kiến thức phổ thông. Cần cho học sinh làm quen phương pháp vận dụng toán học
vào thực tiển. Đặt bài toán trong mối quan hệ với thực tiển, xây dựng mô hình, thu
thập số liệu, đối chiếu lời giải với thực tế, kiểm tra và điều chỉnh, đây cúng là mục
tiêu đào tạo của nhà trường THCS theo chương trình SGK mới.
b./ Nội dung biện pháp: Vận dụng kiến thức toán học để giải quyết các bài
toán thực tế. Dạy học xuất phát từ tình huống thực tế.
c./ Yêu cầu khi vận dụng biện pháp: Cho học sinh nắm được kiến thức cơ
bản của phổ thông, kinh nghiệm hiểu biết và ứng dụng vào thực tiển các bài toán
có nội dung thực tiển giúp học sinh rèn luyện nhân cách. Ứng dụng vào thực tiển
thông qua các mô hình toán học. Chuyển từ thực tiển đến mô hình, học sinh phải
nắm vững các mối quan hệ của toán học với thực tiển và kĩ năng sử dụng các mô
hình.
 Biện pháp 7: Quan tâm đến những sai lầm của học sinh, timg nguyên
nhân và cách khắc phục.
a./ Cơ sở của biện pháp: Đây là mối liên hệ biện chứng của các cập phạm trù
bản chất và hiện tượng. Trong dạy học toán học sinh thường mắc sai lầm, không
chỉ học sinh yếu kém mà ngay cả học sinh khá giỏi cũng vướng sai lầm thậm chí
có những giáo viên dạy toán cũng vướng sai lầm, các sai lầm thường do các
nguyên nhân về tính cách, trình độ, kĩ năng.
b./ Nội dung biện pháp: Học sinh thường vướng sai lầm về chiến lược, chiến
thuật, về lôgic, về vận dụng khái niệm, định nghĩa, công thức tính toán, … Ở mỗi
dạng sai lầm điều có hướng khác phục. Nhìn chung có ba hướng khắc phục chính:
-Trang14 -
Tiểu luận môn đổi mới phương pháp dạy học toán
Cho học sinh nắm vững kiến thức về lôgíc, cho học sinh nắm vững kiến thức giáo
khoa, cho học sinh nắm vững một số phương pháp giải toán cơ bản.
c./ Yêu cầu khi vận dụng biện pháp: Cốt lõi của vấn đề là các em tự tìm thấy
và tự mình phải sửa chữa, thì độ bền và độ chắc mới cao, từ đó các em mới linh
hoạt và sáng tạo trong học tập cũng như tronh tự đánh giá minh và đánh giá các
bạn. đối với học sinh THCS, độ chín chắn của các em chưa sâu, cho nên khi sửa
chữa các sai lầm, chúng ta nên phát biểu để cả lớp học sinh nghe, không nêu tên
em nào ( do yếu tố tâm lí ) để em nào đó mắc sai lầm tự hiểu, ghi nhớ kĩ để sau này
tránh, em nào chưa vướng mắc sai lầm thì nhớ lấy để tránh.
 Biện pháp 8: Chú trọng câu hỏi gợi ý học sinh phát hiện và giải quyết
vấn đề. Quy trình giải quyết vấn đề
a./ Cơ sở của biện pháp: Đặt câu hỏi
Đối với học sinh không có gì có Giám sát các lập luận
thể động viên các em bằng tâm trạng
Kiểm tra xem đã làm xong chưa
thỏa mãn để có được khi trả lời đúng một
câu hỏi và nhận lời khen của giáo viên. Gọi một vài em trả lời
Khi đang suy nghĩ vấn đề có nhiều
Cả lớp nhận xét câu trả lời
hướng bế tắc, nếu được gợi ý hướng giải
quyết thì việc giải quyết vấn đề sẽ được GV khăng định câu trả lời đúng
tiến hành tốt đẹp. Trong quá trình dạy
Cũng cố và khen ngợi
học, dạy cho học sinh cách tự học, tự giải
quyết vấn đề là chủ yếu cho nên việc trang bị cho học sinh hệ thống câu hỏi gợi ý
để các em tự phát hiện và giải quyết vấn đề là điều bức xúc.
b./ Nội dung biện pháp:
Kĩ năng đặt câu hỏi: Khuyến kích cả lớp suy nghĩ để học sinh có thói quen
động não. Hệ thống câu hỏi từ đơn giản đến phức tạp.
-Trang15 -
Tiểu luận môn đổi mới phương pháp dạy học toán
Tính chất của câu hỏi: Rõ ràng, chính xác.
Đa dạng hóa các dạng câu hỏi: Câu hỏi đóng, câu hỏi mở.
Các cấp độ câu hỏi: Câu hỏi đơn thuần yêu cầu học sinh nhớ lại kiến thức
nhằm cũng cố kiến thức mới học. Những câu hỏi này không giúp học sinh phát
triển tư duy. Dạng câu hỏi bậc cao: Nêu lí do, đánh giá, giải quyết vấn đề. Trong
thực tế, các kĩ năng suy nghĩ cấp cao thường tồn tại lâu dài bởi vì các kĩ năng này
thường mang tính thực tiển nên hay được sử dụng.
Những câu hỏi chính đẻ tự giải quyết một bài toán ( theo Pôlya)
+ Hiểu bài toán: Cái gì chưa biết? Những gì đã cho; điều kiện của bài toán là
gì; có thể thỏa mãn được bài toán không? Diễn tả nội dung bài toán bằng kí hiệu
toán học, diễn tả bài toán trên hình vẽ.
+ Đề ra chương trình giải: Có biết bài toán nào giống bài toán này không?
Có thể dùng nó để giải quyết? Có thể phát biểu bài toán dưới dạng khác? Thử giải
bài toán gần giống nó? Sử dụng hết giả thiết chưa?
+ Thực hiện chương trình giải: Thử lại mỗi một chi tiết của chương trình?
Có thể thấy chi tiết này là đúng không? Có thể chứng minh rằng nó là đúng không?
Tổng quát các bước giải bài toán.
+ Phân tích lời giải: Thử lại kết quả? Thử lại sự lập luận? Có thể giải thích
một cách khác không? Có thể tạo ra bài toán mới? Kiểm tra sự phù hợp của lời
giải? Đề xuất vấn đề có liên quan bằng cách xét ương tự, khái quát hóa, đặc biệt
hóa, lật ngược vấn đề.
c./ Yêu cầu khi vận dụng biện pháp: Đặc câu hỏi là phương pháp quan trọng.
nếu không sử dụng phương pháp này không thể làm cho học sinh thực sự hiểu bài
và trang bị cho các em tư duy cấp cao. Phương pháp này giúp cho học sinh vân
dụng các khái niệm, quy tắc; giúp cho giáo viên kiểm tra và sửa lỗi cho học sinh
-Trang16 -
Tiểu luận môn đổi mới phương pháp dạy học toán
ngay tại chổ; cung cấp cho giáo viên thông tin phản hồi để biết học sinh có hiểu bài
hay không; học sinh thấy câu hỏi và câu trả lời là hoạt động thú vị sôi nổi.
PHÂN II: GIÁO ÁN.
TUẦN 5 Ngày soạn : …/…/200…
TIẾT 9 §6. BIẾN ĐỔI ĐƠN GIẢN BIỂU THỨC
A./ MỤC TIÊU :
- Biết được cơ sở đưa thừa số ra ngoài dấu căn và đưa vào trong dấu căn .
- Nắm được kỉ năng biến đổi và vận dụng các phép biến đổi để so sánh hay
rút gon các biểu thức .
B./CHUẨN BỊ :
GV : SGK, Giáo án .
HS : Học thuộc các quy tắc, xem trước §6
C./ CÁC HOẠT ĐỘNG CHỦ YẾU :
HOẠT ĐỘNG GV HOẠT ĐỘNG HS NỘI DUNG
Hoạt động 1: (………) Kiểm tra bài củ.
-Nêu câu hỏi. Phát biểu hằng đẳng thức của
-Gọi hs lên trả lời ? Trình bày phần yêu căn thức bậc hai ?
-Yêu cầu cả lớp tự ghi cầu của đề bài.
lại hằng đẳng thức và Cả lớp thực hiện theo
kiểm tra phần trình yêu cầu của giáo viên
bày của bạn để nhận Theo dõi phần nhận
xét ? xét và sửa sai
-Nhận xét chung
-Trang17 -
Tiểu luận môn đổi mới phương pháp dạy học toán
Hoạt động 2: (………) Tìm hiểu cách đưa thừa số ra ngoài dấu căn
-Để đưa một thừa số 1./ ĐƯA THỪA SỐ RA
ra ngoài dấu căn ta NGOÀI DẤU CĂN :
-Theo dõi đề bài và
làm như thế nào ? Với ; chứng
suy nghĩ cách chứng
-Nêu đề bài và ghi minh rằng
minh
tóm tắc bằng kí hiệu
toán học .
-Yêu cầu hs lên trình Trình bày phần chứng Giải :
bày phần chứng minh VT =
minh ? Vận dụng : khai = VP
-Em đã vận dụng kiến phương một tích và
( Đpcm )
thức nào để chứng khai phương căn thức
Đẳng thức này
minh ? bậc hai
là phép đưa thừa số ra ngoài
-Nhận xét và sửa sai
dấu căn
nếu có . Theo dõi phần hướng
-Giới thiệu tên gọi của dẫn của giáo viên
phép biến đổi
- Hướng dẫn ví dụ 1  Đưa về dạng cơ bản để vận
- Nghe hướng dẫn và
và yêu cầu hs tham dụng
kết hợp theo dõi SGK
khảo theo SGK Ví dụ 1 : ( Sgk )
-Nêu và ghi đề ví dụ -Nghiêm cứu đề ví dụ Vận dụng để rút gọn biểu
2: 2. thức :
-Phân tích và thực Ví dụ 2: ( Sgk )
hiện các thao tác biến
đổi cho các em tham -Theo dõi phân tích
-Trang18 -
Tiểu luận môn đổi mới phương pháp dạy học toán
khảo và kết hợp yêu của giáo viên và kết
cầu hs theo dõi SGK hợp xem SGK
- Biến đổi các biểu
thức về đồng dạng với
nhau
-Nêu đề bài -Đọc đề và suy nghĩ Rút gọn biểu thức :
-Gọi 2hs lên trình bày cách giải . a)
bài giải và yêu cầu cả -Hai hs lên trình bày b)
lớp thực hiện giải cách giải.
đồng thời nhận xét bài -Cả lớp giải và nhận
cảu bạn. xét
-Nhận xét chung và -Theo dõi nhận xét của
sửa sai nếu có . giáo viên
-Từ các ví dụ cụ thể -Suy nghĩ và trả lời : Một cách tổng quát :
trên em hãy cho biết -Vận dụng qui tắc khai
Với A, B ( )
muốn đưa thừa số ra phương một tích để
Ta có :
ngoài dấu căn thì em tích thành tích 2 căn
làm như thế nào ? bậc hai và hằng đẳng
thức căn bậc hai để
-Hướng dẫn cách đưa đưa thừa số ra ngoài
thừa số ra ngoài dấu dấu căn
căn một cách tổng -Theo dõi hướng dẫn
quát : của giáo viên
Ghi đề bài ví dụ 3 Thực hiện áp dụng Ví dụ 3: ( SGK )
Yêu cầu hs tự thực cách đưa thừa số ra a)
hiện áp dụng cách ngoài dấu căn để giải
-Trang19 -
Tiểu luận môn đổi mới phương pháp dạy học toán
đưa thừa số ra ngoài ví dụ 3
b)
dấu căn để giải ví dụ 3
và đối chiếu với SGK Đối chiếu và so sánh
đối chiếu với kết quả
giải
-Nêu đề bài tập 43. -Đọc đề bài Bài tập 43: ( SGK )
-Gọi 2 hs lên giải bài -Trình bày bài giải Đáp số :
tập và yêu cầu cả lớp -Cả lớp nhận xét và a) b) c)
cùng giải đồng thời sửa sai nếu có. d) e)
nhận xét và sửa sai -Theo dõi nhận xét .
( nếu có )
Hoạt động 3: (………) Tìm hiểu cách đưa thừa số vào trong dấu căn
-Giới thiệu phép đưa -Theo dõi hướng dẫn 2./ ĐƯA THỪA SỐ VÀO
thừa số vào trong dấu của giáo viên và cách TRONG DẤU CĂN :
căn . ghi tóm tắt bằng kí
-Ghi tóm tắt như SGK hiệu toán học về phép
đưa thừa số vào trong
dấu
-Nêu và ghi đề ví dụ : -Theo dõi hướng dẫn
-Hướng dẫn hs cách của giáo viên, thực Ví dụ 4 :
thực hiện theo như hiện theo các yêu cầu SGK
SGK của giáo viên đặt ra và
SGK
-Nêu đề bài của -Tìm hiểu đề bài Đưa thừa số vào trong
-Thực hiện giải theo
-Yêu cầu hs lên giải và
-Trang20 -