Đề thi học sinh giỏi cấp huyện môn toán lớp 9

  • 10 trang
  • file .doc
PHÒNG GD – ĐT ĐỨC CƠ ĐỀ THI HỌC SINH GIỎI CẤP HUYỆN
Trường : THCS Nguyễn Trãi
Môn: Toán
Lớp: 9
Thời gian: 150 phút ( không kể thời gian phát
đề)
ĐỀ BÀI
Bài 1: (3,0 điểm)
Cho a,b,c > 0. Chứng minh :
a)
b)
Bài 2: (3,0 điểm)
Cho biểu thức A= , với .
a) Rút gọn A.
b) Tìm x sao cho A < 1
Bài 3: (4,0 điểm)
Giải phương trình.
a)
b)
Bài 4: (2,5 điểm) Tìm số tự nhiên để và là hai số chính phương.
Bài 5: (1,5 điểm) Chứng minh đa thức sau.
A = n3 + 3n2 + 2n chia hết cho 6, với mọi số nguyên n
Bài 6: (6,0 điểm)
Cho tam giác ABC vuông góc tại đỉnh A, đường cao AH. Đường tròn đường kính BH
cắt cạnh AB tại điểm D và đường tròn đường kính CH cắt cạnh AC tại điểm E. Gọi I,J
theo thứ tự là các trung điểm của các đoạn thẳng BH, CH
a,Chứng minh bốn điểm A,D,H,E nằm trên một đường tròn . Xác định hình dạng tứ giác
ADHE.
b,Chứng minh DE là một tiếp tuyến chung ngoài của hai đường tròn
c,Cho biết AB = 6cm, AC = 8cm. Tính độ dài đoạn thẳng DE?
GV ra đề
Nguyễn Thị Kim Yến
ĐÁP ÁN – BIỂU ĐIỂM MÔN TOÁN
Bài 1: (3,0 điểm)
a) Do
(0,25điểm)
(0,25điểm)
(0,25điểm)
bất đẳng thức này đúng =>
(0,25điểm)
b)
vt
(0,25điểm)
=
(0,5điểm)
Áp dụng câu a, ta có:
(1)
(0,25điểm)
(2)
(0,25điểm)
(3)
(0,25điểm)
Cộng (1), (2), (3) vế theo vế ta được điều phải chứng minh
(0,5điểm)
Bài 2: (3,0 điểm)
a) Với x > 0 thì

(0,25điểm)
Thực hiện biến đổi
A=
=
(0,5điểm)
=
(0,5điểm)
=
(0,5điểm)
=
(0,25điểm)
b) khi * vì
(0,25điểm)
Do đó *
(0,25điểm)
(0,5điểm)
Bài 3: Giải phương trình. (4,0 điểm)
a) Điều kiện
(0,25điểm)
(0,25điểm)
(0,25điểm)
hoặc
(0,25điểm)
hoặc
(0,25điểm)
b) (1)
(1,0
điểm)
(0,5điểm)
(0,5điểm)
do
(0,75điểm)
Bài 4 : (2,5 điểm)
Số và là hai số chính phương

(0,5điểm)
(0,5điểm)
Nhưng 59 là số nguyên tố nên:
(0,5điểm)
Ta có : suy ra
(0,5điểm)
Thay vào , ta được .
(0,5điểm)
Vậy với thì và là hai số chính phương.
(0,5điểm)
Bài 5: (1,5 điểm) A = n3 + 3n2 + 2n
A = n(n2 + 3n +2)
(0,25điểm)
= n (n+1)(n+2)
(0,5điểm)
Trong ba số nguyên liên tiếp có một số chia hết cho 2 và một số chia hết cho 3 mà
ƯCLN(2,3)=1
(0,25điểm)
A = n (n+1)(n+3) 6 với mọi số nguyên n
(0,25điểm)
Vậy A = n3 + 3n2 +2n 6 với mọi số nguyên n
(0,25điểm)
Bài 6: